Interaction with Other Fields

Computationa Linguistics

Milestone in Text Mining

Library and

Information

1986	Invention of ID3 algorithm (Quinlan)	
		1. N
	Introduced the concept of Named Entity and Template Element	The c
1996	(Grishman, Sundheim)	or a tr
		and co
1998	Compared learning algorithms for text categorization	pick ı
	(Susan Dumais, Mehran Sahami, etc.)	
	Text categorization with Sunnort Vactor Machines (Joachims)	2. D
	Text categorization with Support vector machines (joachins)	Turn
1000	Improved AdaBoost algorithm and created enhanced decision trees	some
1999	(Robert E. Schapire, Yoram Singer)	
		3. S
2000	Introduced BoosTexter (Robert E. Schapire, Yoram Singer)	In Per
	indouacea Doos Tenter (Itooere D. Senapire, Torain Singer)	exact
	Testified that the accuracy of learning text classifiers can be improved	those
	by blending a large number of unlabeled documents with a small number	
	of labeled training documents (Tom Mitchell, etc.)	4. C
2002	Applied machine learning in automated text categorization and evaluated	FIRSU
	the performance (Fabrizio Sebastiani)	
		activa the te
2010	Applied n-gram on sentiment analysis and opinion mining in Twitter	
		5 (
2014	Applied Convolutional Neural Networks to Sentence Classification	Turn
	(Yoon Kim)	senter
		groun

References

[1] Kobayashi, V. B., Mol, S. T., Berkers, H. A., Kismihók, G., & Den Hartog, D. N. (2018). Text Mining in Organizational Research. Organizational Research Methods, 21(3), 733–765. [2] Talib R et al (2016) Text mining-techniques applications and issues. Int J Adv Comput Sci Appl 7(11):414–418 [3] Zampieri, Marcos & Malmasi, Shervin & Nakov, Preslav & Rosenthal, Sara & Farra, Noura & Kumar, Ritesh. (2019). Predicting the Type and Target of Offensive Posts in Social Media. 1415-1420. 10.18653/v1/N19-1144. [4] https://machinelearningmastery.com/applications-of-deep-learning-for-natural-language-processing/

Text Mining

Instructor: Prof. Lu Xiao

Group 5: Xinxia Song, Yunxia Zhao, Tong Cui, Yuhan Liu

Process of Text Mining

Related Algorithms

Naïve Bayes

core formula is Bayes formula. Initially we may have a corpus raining dataset that can tell the prior probabilities. Then compute compare the posterior probabilities of different classes. At last up the maximum and its corresponding class is what we want.

Decision Tree

the sentences into feature sets. Each node of the tree is a test of features of the training instance.

Support Vector Machine

prception we use a hyperplane to divide all the points in a space ly into two classes. In SVM we maximize the distances between points which are closest to the hyperplane and the hyperplane.

CNN

ly, we vectorize the sentences. And several sentences compose a ix. Then we use a convolutional matrix, a pooling layer and a rate function to turn the input matrix to a value. At last, we classify ext depending on its value.

Clustering

the text into a vector, i.e. the presence and absence of a word in a ence is represented by 1 and 0. Then use a similarity function to find groups of similar texts in a set of texts.

Real World Applications

- 1. **Digital Libraries** (Green-stone international digital library) • Extract what or who a document mentions • Understand what topics it deals with
- Group papers in the same field into one category

2. Healthcare

- Why people hate someone in this event?

Tasks

1. Question Answering	 Answering questions in open domain Answering questions about news and articles Answering questions about certain subjects 	
2. Text Summarization	Creating a title for a textCreating a summary of a text	
3. Machine Translation	Translating a text documentConverting audio to textConverting text to audio	
4.Caption Generation	Describing an imageCreating a caption for a video	
5. Speech Recognition	Transcribing speechesIssuing commands to the radio while driving	
6. Language Modeling	 Spelling correction Handwriting recognition Machine translation Text generation 	
7. Text Classification	 Sentiment analysis Spam filtering Language identification Genre classification 	

• Gain symptoms on the similar diseases, because sometimes they are hard to classify • How symptoms vary in different gender and ages • Evaluating the effectiveness of medical treatments

3. Social Media (twitter, facebook, instagram) Do people love my advertisement? And why? • Do people support the policy change? And Why?

4. Business Intelligence (Amazon, Yelp, Booking) • Customers' attitude toward to new products, like it or not? • Which part I can improve customers' satisfaction? Product or service? • Why people have no interest about my products? Size problem, color or material?